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Abltract 
The use of Linear Quadratic Regulator (LQR) control qntha 
sis techniques implies tho availability of full state feodback. 
For vibration control of structures. usually only a limited 
number of states are measured from which an obsannr model 
reconstructs the full state. This paper shows that using sac- 
ond order observers is a viable technique for rsconrtructing 
the unmeasured states of  structures under mildly restrictive 
conditions. Moreover. tho computational advantaga of the 
second order observer as compared to a first or* observer 
indicate that significantly larger observer models may bo uti- 
ked. Numerical examples am used to demonstrate tho per- 
formance of second order observers. The implications of sac- 

Interaction (CSI) technology is discussed. 

Athens" have proven. whan the full state is awilabb. that 
the LQR techniqm p r a v i k  60. of phase margin and infinite 
gain margin. However. for SP;KI structures tho full state is 
not available and an obsower must k used in conjunction 
with LQR. No guarantees a n  be ma& on the robustness 
properties for the observer based LQR controller.' Thus the 
observer plays a key role in the study of CSI when full state 
feedback is employed. 

Obseww state reconstruction suffers from model errors. 
measurement noire and unmodalad dynamics. Unmodeled 
dynamics result from the usa of reduced ordw models.' To 
reduce the level of unmodakd dynamics. the size of the ob- 

still be pefformed in real-time. The computational advan- 
tages associated with the Hcond order observar may permit 
larger observers with no penalty in sdution time as compared 
to the first order observer. 

Second ordw observer modds havo received recent attention 
in the literature. Hashemipour and Laubs utilized an optimal 
observer known as the Kalman Filter for discretized (time and 
space) second order structures models. In addition, robust 
computational procedures for solution of the K a h n  Filter 
estimation error covrrianca matricm have been developed for 
second order models in Ref. I O .  Unfortunately, the continu- 
ous time Kalman Filter has only been successfully developed 
in first order form. 

It seems paradoxical that the optimal way to estimate the 
states of a second order system is with a first order observer 
modd. Although there is m e  design freadom whon using 
a first order model. tho didvantago of  numerically simrc 
Iating the CSI qua t iom in first order form may prove that 
suboptimal second order observers am most practical. It 
is from this perspective that soma analytical and numerical 
results are presented hemin to highlight the advantages and 
disadvantages of using samd ordw observers to estimate 
the states of realistic spacecraft. 

In section 2. the governing CSI oquationr are prewtntd using 
nomenclature similar to Refs. 9 and 10. It i n c l h  the cia+ 
sical first order observer and a logical form for tho -nd or- 

ond order obServan in the davdopment Of Control/Structures SerVer could be increa&. provided th, observer cln - 
Recent emphasis on tho optimal interdisciplinary dosign 
of activdy controlled sp.cacraft has Id to th. form& 
of a focused research activity within NASA called Con- 
trol/Structures Interaction (CSI). The aim of tlm CSI -a- 
tivity is to coordinate Uniwsity. Industry and h n m t  
research to develop the technology required to  m a b  a&. 
control of flexible spacecraft routine. To this end. w w a l  
investigators have begun to exploit the second order form of 
the differential equations which describe structural dynam 
ics. The controllability and observability of linear second 
order models has been studied by Laub and Arnold'. Hughes 
and Sksltonz and by Bender and Laub? 

Park and Bekin'' demonstrated the computational r d n e  
tages of simulating the coupled CSI equations in second order 
form. Unlika classical first order simulation of tho CSI qua- 
tions. simulation in second order form enables the symnmtry 
and sparsity of the structural equations to be exploited. Si- 
nificant computational efficiancy is ga ind by treating tho CSI 
equations in second order form. Moreover. a natural parti- 
tioning of controls and structures is indicated by maintaining 
the structural equations in second or& 

The linear quadratic regulator (LQR) control synthesis tech- 
nique has excellent robustness properties. Safonov and 

der observer. Stability and performace of the observers are 
discussed in Section 3. Practical computational aspects of 

numerical results which demonstrate the viability of second 
order obscnrers. In addition. implications of the second order 
observer on CSI technology are discussed. 

\ 
' Structural Division, NASA Rnrch the observers are examined in Setion 4. Section 5 
Center. Member AIAA. 

Member AIAA. 
Professor of Aerospace Engineerbg. University of Colorado. 
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2. Co-d St ruc tu re  S v  

A control-structure interaction system can be represented as 
shown in Fig. 1. The linear time-invariant discretired equa- 
tions of motion for the structure (plant) may be described 
by the following set of continuous-time equations: 

where M, D, K are the mass. damping and stiffness ma- 
trices, respectively. These matrices, typically derived using 
finite element modeling, ,are symmetric and sparse. The vec- 
tor f represents known. state independent. applied forces. B 
is the actuator location matrix and u is the state dependent 
control force. The matrix G describes the disturbance loa- 
tion and w is the disturbance vector. The displacement and 
velocity initial conditions are given by 90 and 4. respectively. 
The measured output of the system is x where v is a vector 
of measurement noise. The matrices Hd and H, represent 
the displacement and velocity sensor locations and F, 'and 
F, are feedback gain matricas of the controller. 

The conventional technique for dealing with multi-variable 
conttol problems is to  convert the system to first order state- 
space form. 

x = Ax+ Ef + BU + &v 

c = a X + v ,  x(0) 'x, 
(2 * 2) 

U = F X  

where 

x =  [z] 
The control gain F may be synthesized by a number oft& 
niques as given in standard texts such as Ref. 11. When 
full state faadback is used, and the full state cannot be mea- 
sured, an observer modd must be developed to estimate the 
states of tho entire structure from the measured states . The 
form of the first order and second order observer models is 
discussed below. 

t Order 0- 

The observer model is usually constructed by augmenting 
(2.2) by a state correction term such that 

i = ;Li +Ef +Bu + L(2 - &) 

ji(0) = o  
(2 * 3) 

I r I Dq+Kq = f  + Eu -Gw ~ 

Figure 1. Typical Control/Structure Interaction System 

and A. E. B and H are a reduced order description of the 
structural system, actuator and sensor locations. The vector 
2 is th estimated state. Adding the state correction term 
L(2.- E) forces the observer model to track the measured 
states of the structure. Since the disturbance is unknown. it 
is not included in the observer. 

The observer gain matrix L can be synthesized by a num- 
ber of techniques. If covariance matrices of the noise and 
disturbance processes in (2.1) are available, the Kalman FiC 
ter can be constructed.g-ll The Kalman Filter provides an 
optimal balance of observer performance and noise rejection: 
however. a first order observer is required. Since a structure 
is represented with second order models, it seems natural 
to choose a second order observer model for estimation of 
structural states. The second order observer is described 
below. 

A linear observer modd could be derived by adding a state 
correction term to a reduced order form of (2.1). such that 
the estimated states ii and 3 are computed from 

Ma +Di+ K G  = &+Bu + a27 
G(0) = 0, $0) = 0 (2 4) 

* 

where M. D and K represent a r e d d  order model of the 
structure and 7 is a state correction term of the form 

The second order observer form given by (2.4) may be solved 
efficiently by keeping the control and state dependent state 
correction terms on the right-trand-side (RHS) of the equa- 
tion. This permits the symmetry and sparsity of the observer 
mass. damping and stiffness matrices to be exploited by the 
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computational algorithms. References 4 and 5 present a par- 
titioned solution procedure for this type of equation. 

w 2  = (4k f 2LIHdd + 4mLlHd - m(L,Hd + LzHv)' 

-2LaH.d - 4LlH.k - h/m]/4m 
From (2.4) one observes the absence of L,, which must be 
null for a second order observer to be constructed. T_he a k  
sence of L, is needed to establish the identity relation q = 4. 

ing the relation that the time derivative of position is equal 
to the valeocity as shown in the top raw of equation (2.2). 
To transform a first order system to a second order one. 
the identity relation must exist. The effects of La = 0 are 
described in the next section. 

A second order system is written in first order form by us- 

3. -and* of Observerr 

To study the ability of the observer to predict the states of 
the structure, the equation for the error between the actual 
states and the predicted states. e = (q-4) is examined. To 
simplify the discussion, we consider an unreduced observer 
A = A, B = B, H = H. The deterministic amor is given 
bY 

~ 

From (3.1). it is seen that the error asymptotically goes to 
zero. provided the matrix [A - LH1 is stabk T k  next 
section describes the stability limitation of second order ob 
servers using a simple singladegree-of-freedom model. 

A deterministic s ing ladegmwf - fdom (SDOF) modal con- 
sisting of a spring (k). a damper (d) and a mass (m) is used 
in this section to highlight differences in stability betwean the 
first order and second order obsewar modds. The system 
equations in first order form may be written for the structure 
as 

and for the observer as 

The stability of the observer can be determined from the 
poles of the error equation 

e = [ -k/m -LlHd - L'Hd -d/m l-LIH.  - IyH. ] e  (3.4) 

The poles of (A - LH) in (3.4) are 

A,, = o f  j w  (3 5) + 
where 

-(d/m i- LaH, i- L&) 
2 

U =  

The pole locations given by (3.5) show the effect of the ob- 
server gains on the error betwean the actual and predicted 
states. The L, gain increases the rate of decay of the error 
when position measurements are used. The L, gain also ef- 
fects the frequency of tha error response when velocity mea- 
surements are used. The Ls gain uses the velocity mea- 
surement to increase rate of k a y  and the L, gain uses 
position measurement to effect the frequency of the error 
response. 

From the rbwe considerations. distinct differences are seen 
in the first order and second order observers (L, = 0). The 
first order observer can produce a stabk reconstruction error 
utilizing position and/or vebcity measurements. The second 
order observer poles are given by 

which show velocity marsuremants must be available to aug- 
ment the error decay rate. For example. if the structure was 
undamped, (d = 0). and no velocity measurements were 
made (H.=O) then tho first order observer would have the 
real part of the poles located at 

Thus the first order obrwwr would k stable. Howaver. 
the second order obsemr would be unstable. u = 0. Even 
though stability is gainad by a small amount of damping, 
(d # 0). the second order ob- would have poor per- 
formance without augmenting the damping through velocity 
feedback. Observer performance is discussed in the next sec- 
tion. 

3.2 Perlormanee- 
The performance of the observer depends on the eigenvalues 
and eigenvectors of tho matrix [A-La]. The eigenvalues de- 
termine the speed and rat. of observer convergence. Rule of 
thumb choices for tk Sig.nvllucrr should be somewhat larger 
than the closed loop system [A + BF]. but not exceedingly 
so, to prevent problems due to  high frequency noise. The 
eigenvalues and eigenvectors of the observer matrix can be 
placed to maximize noise and dirturbance rejection. Because 
the second order obsarvar restricts the design, L, = 0. some 
of the freedom in placing tha eigenvalues and eigenvectors is 
lost. 

Robust methods for desigdng second order observer gains 
remains a fruitful area of research. The results herein have 
synthesized Kalman Filter gains and subsequently ignored 
the L, gain. This approach may or may not lead to a stable 
observer. If La is not stablizing it must be augmented. Even 
if L, is stablizing some loss of performance is expected. par- 
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titularly in terms of noise rejection. However. this may be 
a reasonable penalty for the increased computational speed 
gained by using a second order observer model which could 
be translated into reducing the level of unmodeled dynam- 
ics. The model error (uncertainty) would be the same for 
the first or second order observer. Future research is needed 
to determine the robustness characteristics of second order 
observers. 

for Simulation 
Solution of the CSI equations is typically performed using 
digital computations. It is this consideration that leads to 
the study of second order observers for CSl technology. As 
shown in the following paragraphs, the second order observer 
provides the potential for larger observers and/or faster com- 
putational solutions than can be realized with the first order 
observer 

4J First Order Observer Solution 
The first order observer given by (2.3) may be solved by 
several methods. One popular method is to compute the 
matrix exponential of 

A. = [;i + BF - ~Hij (4 * 1) 

so that 
I-' = O(h)l" + l'(h)(Ef" + Lz") (4 * 2) 

and h is the temporal step size. 

Defining N as the number of structural degrees of freedom. 
then O(h) is a 2 N  by 2 N  matrix. 

Because O(h) is computed once for time invariant systems, 
the matrix exponential computation does not significantly in+ 
pact the total time required for a long simulation. However. 
computing the matrix exponential for large systems does 
cause accuracy and storage problems. O(h) occupies 4 W  
storage locations since the matrix is typically not symmat- 
ric or sparse. Independent of the number of sensors. (4.2) 
requires, as a minimum, multiplication of O(h) by a vector 
a t  each time step. This represents 4 W  operations at each 
step of the simulation. 

An alternative approach to  the matrix exponential route is to 
piscretize the equations of motion in time to derive differanco 
equations. This approach has been used by the present arc 
thors in Refs. 4 and 5. Midpoint implicit integration formulas 
were used to discretize (2.3) to derive a linear equation 

s$n+'/a = 8n+i/a 

(4 * 3) 
%n+i/a - 

where 
h h 
2 2 

S = I - -Ao, 8 = -(Ef"+'la + La"+'/'] + 5" 

TO solve (4.3) an L-U decomposition is performed once for 
time invariant systems and subsequently a lower and upper 
triangular system is solved a t  each time step. Since the L-U 
decomposition of S is not sparse or symmetric, 4 N 2  storage 
locations are required. In addition, the two triangular sys- 
tem solutions require 4Na operations. Thus, the first order 
observer requires the same computational resources for both 
the matrix exponential approach and the time discretization 
approach. 

The second order observer modd given in (2.4) can be solved 
using the time discretization approach as presented in Refs. 
4 and 5. A summary of the procedure is presented herein. 

We express a set of the mid-point implicit formulas with the 
step size h 

rn+i/a 4"+'/' =4"+6q , 6 = h/2 
:n+i/a = tn + 64"+i1a (4 * 4) i. a n + l  = 24"+1/2 - Q" 

The selection of the mid-point implicit formula (or the trape- 
zoidal .rule) for controlled structures is due to its minimal 
frequency distortion and no numerical damping characteris- 
tics. 

Implicit time discretization of (2.4) using (4.4) yields the 
following difference equation: - -n+i/a = gn+i/a 

S = M + 6 D  + PK 
p / a  = p ( p + i / a  + Bun+i/a + &7n+i/a) 

sq 

~ n + i  = 24n+1/1- 4" 
(4 * 5 )  +M(Qn + 64") + 6DQ" 1 i n + l J a  = (Qn+i/a - 4")/6 

From (4.5) it can be seen that u"+'/~ and are r e  
quired to numerically solve for $""Ia. The partitioned SD. 
lution procedures". uses equation augmentation to predict 
uM1la and 7"+'/' thereby maintaining the symmetry and 
sparsity of the 6 matrix even after L-U decomposition. For 
the second order observer. 6 is an N by N matrix. If the 
bandwidth of 6 is proportional to N by a constant a: 

Bandwidth = aN 

then, only aN' storage location are needed. Most impor- 
tantly. only 2N(aN + 1) operations are needed for the two 
triangular system solutions at each tima step. 

Comparing the second order observer minimum solution time 
to the first order observer minimum solution time yields 

(2aW + 2N) - a + is 
4N3 2 

Note this is an approximate count of the number of oper- 
ations as the right-hand-side of (4.2) and (4.5) require ad- 
ditional operations. Nevertheless. for a typical bandwidth 
of 10 percent. and N > 1. the second order observer re- 
quires approximately 5 percent of the number of operations 
as does the first order observer. (Reduced order observer 

0 

4 



models based on a modal description of the structure yields 
aN = I!) Such a drastic reduction in computations may 
lead to new applications of observers in CSI tcchdogy. 

To evaluate the petformaco of the second &dw observers 
numerically. several examples are presented. The first exam 
ple is relatively simpk. a beam with an unducad observer 
model. The second example is more realistic in that a large 
truth model is used in conjunction with a reduced order o b  
server. The encouraging results from these examples prompt 
us to consider serious use of second order observers in CSI 
technology. 

5.1 Be- 
To study the effects of approximating a first order observer 
by a second order observer, the beam model shown in Fig. 2 
has been used for numerical studies. The beam &subjected 
to a step load for 0.002 seconds and a regulator control sys- 
tem is activated at t=O.Ol sec. A finite elemant model was 
constructed with 8 planer beam elements to form a 27 de- 
gree of freedom representation of the beam. A three mode 
modal space control law was used with the perfomunca cow 
rtraint that the vibration amplitude must be kss than 0.025 
in, within 0.1 sec. after the control system is activated. Lat- 
eral position and velocity measurements were made at each 
of the three locations indicated in Fig. 2 for a total of 6 mea- 
surements. A Kalman Filter was constructed to predict the 
unmeasured states of the system. Results for the unreduced 
structure and observer are shown in Fig. 3. The observer, 
shown by the dashed line. rapidly converges to the true PO- 
sition of the beam lateral deflection (measured at the point 
of loading). 

To determine the viability of a second order observer. L, 
was set equal to zero and the observer equation was solved 
in second order form. The response of the second order 
observer is shown in Fig. 4. The second order observer is 
slower to converge to the actual beam deflection than the first 
order obwnrer. Nevertheless. the second order observer did 
converge. thus, the observer stability was maintained when 
L1 was neglected. 

The beam response with the control law b a d  on a perfect 
observer (all states are reconstructed with no mor). the first 
order observer and the second order observer is presented in 
Fig. 5. Although the second order observer produced no- 
ticeable performance degradation in the initial time after the 
control system was activated, it achieved nearly the same 
levd of vibration attenuation after td.1 sec. aa did the per- 
fect observer. Thus, the second order observer is quite viable 
for this example where both position and velocity measure 
ments were available. 

f L  I 0.002 

L - 108'- 
Measurmentl;actuation 
locations 

PfOpWth open loop frequencies (W 

E - 40E + 6 IMn2 

G I 2.4E + 6 

p I 1.132E - 4 Ib-s2/in. 

f l  156.06 

f2 I 233.22 

f3 a 556.73 

f4 a 2693.6 

Figure 2. Pinned-Pinned Beam Structure 

0.4 - 
/ Structure 

------- Observer 

Displacement, 
in. 

I , I , t  ' I '  -0.4( I '  ' ' ' 
0.0 0.8 0.16 

Time, sec 

Figure 3. Beam and First Order Observer Response 

Figure 4. Beam and Second Order Observer Response 
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The truss has a three meter square cross section. It con- 
sists of 51 mm diameter by 1.59 mm wall thickness graphite 
epoxy tubes. The modulus of elasticity and mass density of 
the tubes are 275.9 E+O9 N/M" and 3250.0 Kg/MS. respa- 
tively. Although the antennas have the same tube dimensions 
as the truss. nonstructural mass make the effective tube den- 
sity = 9750.0 Kg/MS for the two antennas. The finite el+ 
ment representation of the EPS consisted of 570 degrees of 
freedom. Table 1. lists the first 20 frequencies of the EPS 
structure. 

Tabk 1. EPS Vibration Frequencies (Hz.) 

1. o.Oo0. 2. o.Oo0 

3. o.oO0. 4. o.Oo0 

5. O.oO0. 6. O.Oo0 

7. 0.242. 8. 0.406 

9. 0.565, 10. 0.656 

11. 0.888, 12. 0.888 

13. 1.438. 14. 1.536 

15. 1.776. 16. 1.776 

17. 3.026. 18. 3.026 

19. 3.513. 20. 3.531 

- Perfect 
_-_--- First order -- - Second order 

0.4 

Fh ... 
Displacement. 

in. 0 

0 0.08 0.16 
Time, sec 

Figure 5. Comparison of Beam Response with Different 

Observers 

h Po- 

A mom realistic example of spacecraft being studied for ac- 
tive vibration control is the Earth Pointing Satellite (EPS) 
shown in Fig. 6. This modal is a derivative of a geostationary 
platform designed for study of Earth Observation Sciences 
(EOS). Two flexible antennas are attached to a truss (bus). 
Typical missions involve pointing one antenna to earth, while 
tracking with the other antenna. 

6 

Figure 6. Earth Pointing Satellite Structure 

O-O' I: EPS - 

Displacement. 
M 

0 

-0.002 " ' ' " ' ' ' ' ' ' I " 
0 10 20 

' Time, sec 

Figure 7. EPS Antenna and Second Order Observer 

Response 

To study the viability of second order observers for this struc- 
ture. sensors were located on the 15 M antenna hoop shown 
in Fig. 6 to measure the position and velocity of the antenna 
hoop. In addition. sensors were located a t  the center of 
gravity (CG) to measure the spacecraft attitude and attitude 
rate. The number of measurements used in the cqnstructk 
tion of Kalman Filter gains varied from 10 to 20 to create 
three different reduced order observer models. Again. the 
second order observer was derived by neglecting the L, gain 
which can result in an unstable observer for some problems. 
The observer was studied independent of a feedback control 
law by simply applying an impulsive loading to the open loop 
structure. An impulse was applied as an initial angular v e  
locity about the z-axis of 100.0 rad/= between the 15 M 
antenna and the truss. Note that this excitation will excite 
both rigid body and fkxible vibrations of the EPS. 

Figure 7 shows the structure and observer displacement re- 
sponse for 15 modes in the observer model. and a full 570 
degree of freedom model of the EPS. Although the observer 
is stable. considerable error exists at the higher frquencies. 
Figure 8 shows the error between the EPS states and the ob- 
server states as the number of modes in the observer model 
was increased from 10 to 20. These results show the im 
portance of larger observers in state estimation of realistic 
spacecraft. 



- :O mcces -------- 15 modes 
1. I ---- 20 mcdes 

.co1 

Error, 
M .0005 

0 

' I  
I .  . , .  l L . . . C . . . . l  -.0005 ' ' ' ' 

0 10 20 
Time. sec 

Figure 8. Reconstruction Error Convergence for EPS 
0 bservers - 

Classical multivariabla control observer gain synthesis algo- 
rithms produce first order observer models. Results have 
been presented which show that approximating the first or- 
der observers by a second order observer can be successfully 
carried out if velocity measurements are available. 

This paper. in conjunction with previous works by the au- 
thors. has shown that second order observer models are 
computationally advantageous. The increased computational 
speed can be translated to larger observers and/or faster 
sampling rates. Larger observers allow the designer to con- 
trol more 'modes' of the structure which is incmsingly im 
portant for future spacecraft missions. On the other hand. 
if the designer chooses, he may translate the increased c o m  
putational speed into faster measurement/control updates. 
This may prevent phase distortion in some appkations and 
may actually enable observer based controllers when large 
bandwidths are nccessary. 

Advances in CSI technology will occur by exploiting the phys- 
ical attributes of structures and structural modah. This p, 
per should serve to stimulate interest in the usa of second 
order observers for state estimation of structures. Second or- 
der observers may prove suboptimal as compared to the first 
order observer, nevertheless. practical considerations such as 
computational speed may be the decisive factor in developing 
CSI technology. More research is needed to determine i f  full 
state feedback is tha control law of preference for controlled 
spacecraft. If the answer is affirmative. the second order o& 
server promises to play an important role. However, much 
research is still needed in the areas of directly synthesizing 
second order observer gains and on determining robustness 
of the second order observer. 
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